Homotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem
نویسنده
چکیده مقاله:
In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.
منابع مشابه
Homotopy Analysis Method for Computing Eigenvalues of Sturm-Liouville Problems
In this paper, we apply homotopy analysis method (HAM) for computing the eigenvalues of SturmLiouville problems. The parameter h, in this method, helps us to adjust and control the convergence region. The results show that this method has validity and high accuracy with less iteration number in compare to Variation Iteration Method (VIM) and Adomian decomposition method (ADM). Moreover it is il...
متن کاملExtremal Eigenvalues for a Sturm-Liouville Problem
We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...
متن کاملHomotopy Perturbation Method for Solving Sturm-Liouville Problems of Fractional Order
In this paper, the fractional Sturm-Liouville problems, in which the second order derivative is replaced by a fractional derivative, are derived by the Homotopy perturbation method. The fractional derivatives are described in the Caputo sense. The present results can be implemented on the numerical solutions of the fractional diffusion-wave equations. Numerical results show that HPM is effectiv...
متن کاملHomotopy Perturbation Method for Computing Eigenelements of Sturm-Liouville Two Point Boundary Value Problems
Recently a great deal of interest has been focused on the application of HPM for the solution of many different problems. The technique has been applied with great success to obtain the solution of a large variety of nonlinear problems in both ordinary and partial differential equations and integro-differential equations[1-10]. In this work we apply HPM to approximate eigenvalues and eigenfunct...
متن کاملLeft-Definite Sturm-Liouville Problems
Left-definite regular self-adjoint Sturm-Liouville problems with separated and coupled boundary conditions are studied. A characterization is given in terms of right-definite problems, a concrete and “natural” indexing scheme for the eigenvalues is proposed. Pruefer transformation techniques can be used to establish the existence of and to give a characterization for the eigenvalues in the case...
متن کاملMultiplicity of Sturm-liouville Eigenvalues
The geometric multiplicity of each eigenvalue of a self-adjoint Sturm-Liouville problem is equal to its algebraic multiplicity. This is true for regular problems and for singular problems with limit-circle endpoints, including the case when the leading coefficient changes sign.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 4
صفحات 501- 507
تاریخ انتشار 2018-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023